Korisnički alati

Site alati


studenti:petra_omrcen:po_ps_l_2018

Razlike

Slijede razlike između dviju inačica stranice

Poveznica na ovu usporedbu

Starije izmjene na obje strane Starija izmjena
Novija izmjena
Starija izmjena
studenti:petra_omrcen:po_ps_l_2018 [2019/04/18 12:15]
pomrcen [Dnevnik rada]
studenti:petra_omrcen:po_ps_l_2018 [2023/06/19 16:21] (trenutno)
Redak 3: Redak 3:
 ==== Zadatak ==== ==== Zadatak ====
  
-U okviru seminara treba istražiti koji algoritmi strojnog učenja su primjenjivi za problem klasifikacije fragmenata datoteka. Fragmenti datoteka su zapisi duljine 512 bajtova koji su isječci iz datoteka čiji tip (format) je potrebno odrediti. Tipično se kao ulazni podaci u algoritme strojnog učenja u ovom problemu ne koriste sami nizovi bajtova, nego histogrami bajtova (učestalost pojavljivanja svakog od 256 bajtova (0 do 255) u danom ulaznom nizu). +U okviru seminara treba istražiti koji algoritmi strojnog učenja su primjenjivi za problem klasifikacije fragmenata datoteka. Fragmenti datoteka su zapisi duljine 512 bajtova koji su isječci iz datoteka čiji tip (format) je potrebno odrediti. Tipično se kao ulazni podaci u algoritme strojnog učenja u ovom problemu ne koriste sami nizovi bajtova, nego histogrami bajtova (učestalost pojavljivanja svakog od 256 bajtova (0 do 255) u danom ulaznom nizu). Za početak istražiti umjetne neuronske mreže, konvolucijske neuronske mreže, algoritam slučajnih šuma, KNN, itd. Odabrati te i još neke algoritme koji su prikladni za klasifikaciju fragmenata datoteka. Obraditi svaki algoritam tako da se objasni barem njegov princip rada, prednosti, ograničenja,​ tipične primjene i radove u kojima se ta tehnika koristila za klasifikaciju fragmenata datoteka. Fokusirati se ili na širinu područja (upoznati što više algoritama) ili odabrati 5-10 algoritama i za njih pronaći programski jezik ili okolinu u kojoj su već implementirani i istrenirati klasifikator na temelju dostupnog skupa podataka.
-Za početak istražiti umjetne neuronske mreže, konvolucijske neuronske mreže, algoritam slučajnih šuma, KNN, itd. Odabrati te i još neke algoritme koji su prikladni za klasifikaciju fragmenata datoteka. Obraditi svaki algoritam tako da se objasni barem njegov princip rada, prednosti, ograničenja,​ tipične primjene i radove u kojima se ta tehnika koristila za klasifikaciju fragmenata datoteka. Fokusirati se ili na širinu područja (upoznati što više algoritama) ili odabrati 5-10 algoritama i za njih pronaći programski jezik ili okolinu u kojoj su već implementirani i istrenirati klasifikator na temelju dostupnog skupa podataka.+
  
  
 +==== Rezultat ====
 +
 +{{ :​studenti:​petra_omrcen:​seminar-pomrcen.docx |Seminar}}, {{ :​studenti:​petra_omrcen:​prezentacija-pomrcen.pptx |prezentacija}}.
  
 ==== Plan rada ==== ==== Plan rada ====
  
-   - Pronalaženje iscrpnog popisa algoritama strojnog učenja +  ​- Pronalaženje iscrpnog popisa algoritama strojnog učenja 
-   ​- Početno ispitivanje algoritama i izbor onih koji su prikladni za problem koji se rješava +  - Početno ispitivanje algoritama i izbor onih koji su prikladni za problem koji se rješava 
-   ​- Analiza i opis svakog od odabranih algoritama +  - Analiza i opis svakog od odabranih algoritama 
-   ​- Identifikacija radova u kojima je taj algoritam korišten za klasifikaciju fragmenata datoteka (pretraga po ključnim riječima koje uključuju ime algoritma, file fragment classification) +  - Identifikacija radova u kojima je taj algoritam korišten za klasifikaciju fragmenata datoteka (pretraga po ključnim riječima koje uključuju ime algoritma, file fragment classification) 
-   ​- Fokus na većem broju algoritama (pregled područja u širinu) ili umjesto toga za neki/neke algoritme pronaći programske implementacije i istrenirati klasifikator za podatke. +  - Fokus na većem broju algoritama (pregled područja u širinu) ili umjesto toga za neki/neke algoritme pronaći programske implementacije i istrenirati klasifikator za podatke.
  
 ==== Vremenski plan rada ==== ==== Vremenski plan rada ====
Redak 25: Redak 26:
 |4. tjedan(8.4.-14.4) ​ |Pretraga znanstevnih radova ​ | |4. tjedan(8.4.-14.4) ​ |Pretraga znanstevnih radova ​ |
 |5. tjedan(15.4.-21.4.) ​ |(19.4.-predaja prve verzije) Pronalazak implementacije određenih algoritama i treniranje ​ | |5. tjedan(15.4.-21.4.) ​ |(19.4.-predaja prve verzije) Pronalazak implementacije određenih algoritama i treniranje ​ |
- 
-\\ 
- 
  
 ==== Dnevnik rada ==== ==== Dnevnik rada ====
Redak 35: Redak 33:
 |25.3.-31.3.| ​  \\ Pronalazak algoritama i njihovo proučavanje. \\   \\ 1. Linear Regression \\  \\ 2. Logistic Regression \\  \\ 3. Linear Discriminant Analysis \\  \\ 4. Classification and Regression Trees \\  \\ 5. Naive Bayes \\  \\ 6. kNN|6 h|Detaljnije ispitivanje pronađenih algoritama i ispitivanje koji su prikladni za rješavanje problema.| |25.3.-31.3.| ​  \\ Pronalazak algoritama i njihovo proučavanje. \\   \\ 1. Linear Regression \\  \\ 2. Logistic Regression \\  \\ 3. Linear Discriminant Analysis \\  \\ 4. Classification and Regression Trees \\  \\ 5. Naive Bayes \\  \\ 6. kNN|6 h|Detaljnije ispitivanje pronađenih algoritama i ispitivanje koji su prikladni za rješavanje problema.|
 |1.4.-7.4.| ​  ​\\ ​  \\ Jos neki algoritmi: \\  \\ 7. Learning Vector Quantization \\  \\ 8. Support Vector Machines \\  \\ 9. Bagging and Random Forest \\  \\ 10. Boosting and AdaBoost \\  \\ 11. Principal Component analysis (PCA) \\  \\ 12. Neuronske i konvolucijske mreže \\  \\ [[https://​www.sciencedirect.com/​science/​article/​pii/​S1742287613000546#​sec1|https://​www.sciencedirect.com/​science/​article/​pii/​S1742287613000546#​sec1]] \\   ​\\ ​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S1742287608000273|https://​www.sciencedirect.com/​science/​article/​pii/​S1742287608000273]] \\   ​\\ ​ [[https://​pdfs.semanticscholar.org/​c398/​72eae0c61ecf47603aab3f5c1545ee612ac9.pdf|https://​pdfs.semanticscholar.org/​c398/​72eae0c61ecf47603aab3f5c1545ee612ac9.pdf]] \\   ​\\ ​ [[http://​cs229.stanford.edu/​proj2014/​Andrew Duffy, CarveML an application of machine learning to file fragment classification.pdf|http://​cs229.stanford.edu/​proj2014/​Andrew%20Duffy,​%20CarveML%20an%20application%20of%]]|6 h|   \\ Pretraga znanstvenih radova i odabir određenih par algoritama za rješavanje problema.| |1.4.-7.4.| ​  ​\\ ​  \\ Jos neki algoritmi: \\  \\ 7. Learning Vector Quantization \\  \\ 8. Support Vector Machines \\  \\ 9. Bagging and Random Forest \\  \\ 10. Boosting and AdaBoost \\  \\ 11. Principal Component analysis (PCA) \\  \\ 12. Neuronske i konvolucijske mreže \\  \\ [[https://​www.sciencedirect.com/​science/​article/​pii/​S1742287613000546#​sec1|https://​www.sciencedirect.com/​science/​article/​pii/​S1742287613000546#​sec1]] \\   ​\\ ​ [[https://​www.sciencedirect.com/​science/​article/​pii/​S1742287608000273|https://​www.sciencedirect.com/​science/​article/​pii/​S1742287608000273]] \\   ​\\ ​ [[https://​pdfs.semanticscholar.org/​c398/​72eae0c61ecf47603aab3f5c1545ee612ac9.pdf|https://​pdfs.semanticscholar.org/​c398/​72eae0c61ecf47603aab3f5c1545ee612ac9.pdf]] \\   ​\\ ​ [[http://​cs229.stanford.edu/​proj2014/​Andrew Duffy, CarveML an application of machine learning to file fragment classification.pdf|http://​cs229.stanford.edu/​proj2014/​Andrew%20Duffy,​%20CarveML%20an%20application%20of%]]|6 h|   \\ Pretraga znanstvenih radova i odabir određenih par algoritama za rješavanje problema.|
-|8.4.-14.4.| ​   \\ Detaljno sam proučila neuronske i konvolucijske mreže, kNN i algoritam slučajnih šuma i shvatila njhov princip rada, što primaju, što rade s podacima i što na kraju daju kao izlaz. \\  \\ Odlučila sam te algoritme iskoristit u rješavanju problema te sam našla neke radove u kojima se oni koriste za klasifikaciju fragmenata datoteka. (Nisam ih puno našla tako da mi nije poptpuno jasno kako to točno funkcionira za naš problem…) \\  \\ Započela sam pisanje seminara. \\  \\  \\  \\  \\  \\ [[https://​link.springer.com/​content/​pdf/​10.1007/​978-3-642-24212-0_5.pdf|https://​link.springer.com/​content/​pdf/​10.1007%2F978-3-642-24212-0_5.pdf]] \\  \\ -za kNN: \\  \\ [[https://​www.researchgate.net/​publication/​282375639_A_Practical_Video_Fragment_Identification_System|https://​www.researchgate.net/​publication/​282375639_A_Practical_Video_Fragment_Identification_System]] \\ |7h|   \\ Istražiti još detaljnije kako ovi algoritmi rade za klasifikaciju fragmenata datoteka. Pronaći još radova. \\   \\ Napisati poglavlja seminara koja sam započela. \\  \\ *Pronaći implementacije za jedan ili više algoritama.|+|8.4.-14.4.| ​  \\   ​\\ ​ \\  ​\\ Detaljno sam proučila neuronske i konvolucijske mreže, kNN i algoritam slučajnih šuma i shvatila njhov princip rada, što primaju, što rade s podacima i što na kraju daju kao izlaz. \\  \\ Odlučila sam te algoritme iskoristit u rješavanju problema te sam našla neke radove u kojima se oni koriste za klasifikaciju fragmenata datoteka. (Nisam ih puno našla tako da mi nije poptpuno jasno kako to točno funkcionira za naš problem…) \\  \\ Započela sam pisanje seminara. \\  \\  \\  \\  \\  \\ [[https://​link.springer.com/​content/​pdf/​10.1007/​978-3-642-24212-0_5.pdf|https://​link.springer.com/​content/​pdf/​10.1007%2F978-3-642-24212-0_5.pdf]] \\   ​\\  -za kNN: \\   ​\\  [[https://​www.researchgate.net/​publication/​282375639_A_Practical_Video_Fragment_Identification_System|https://​www.researchgate.net/​publication/​282375639_A_Practical_Video_Fragment_Identification_System]] \\   \\  -za neuronske: \\   ​\\ ​ [[https://​www.researchgate.net/​publication/​303823046_File_Type_Identification_for_Digital_Forensics|https://​www.researchgate.net/​publication/​303823046_File_Type_Identification_for_Digital_Forensics]] \\   ​\\ ​ [[https://​arxiv.org/​ftp/​arxiv/​papers/​1002/​1002.3174.pdf|https://​arxiv.org/​ftp/​arxiv/​papers/​1002/​1002.3174.pdf]] \\   ​\\ ​ -za konvolucijske:​ \\   ​\\ ​ [[https://​www.researchgate.net/​publication/​327336441_File_Fragment_Type_Identification_with_Convolutional_Neural_Networks|https://​www.researchgate.net/​publication/​327336441_File_Fragment_Type_Identification_with_Convolutional_Neural_Networks]]|7h|   \\ Istražiti još detaljnije kako ovi algoritmi rade za klasifikaciju fragmenata datoteka. Pronaći još radova. \\   \\ Napisati poglavlja seminara koja sam započela. \\  \\ *Pronaći implementacije za jedan ili više algoritama.|
 |15.4.-21.4.| | | | |15.4.-21.4.| | | |
  
-\\ 
- 
- 
-==== Rezultat ==== 
  
  
 ==== Zaključak ==== ==== Zaključak ====
- 
  
 ==== Prijedlog za daljnje istraživanje ==== ==== Prijedlog za daljnje istraživanje ====
studenti/petra_omrcen/po_ps_l_2018.1555589740.txt.gz · Zadnja izmjena: 2023/06/19 16:20 (vanjsko uređivanje)